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WHAT’S A MEMRISTOR?

• Memory-resistor :
the missing 4th circuit element

• predicted by Leon Chua (1971)

• discovered by HP guys (2008)

• a big hype - we can now do a 
lot more with circuits!  Really?
(such as building brain-like 
computers!?)  
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Memristor for introductory physics

Frank Y. Wang
Mathematics Department, LaGuardia Community College,

The City University of New York, Long Island City, New York 11101∗

Students learn from physics textbooks that there are
three fundamental two-terminal circuit elements: resis-
tors, capacitors and inductors. In 2008 May, scientists at
Hewlett-Packard Laboratories published a paper in Na-
ture announcing the invention of the fourth element—
memristor.1,2 In that paper, Strukov et al presented a
model to illustrate their invention. Their model provides
a simple explanation for several puzzling phenomena in
nanodevices, yet it involves no more mathematics than
basic algebra and simple integration and differentiation,
and is comprehensible for college students with knowl-
edge of first-year physics and calculus. In this note, we
guide students to derive the analytical solution to the
equations for the memristor model described in that pa-
per, and use it to calculate the current responding to a
sinusoidal voltage. Through this exercise, students will
realize the nonlinear effects in electric circuit, which is
ubiquitous in nanoscale electronics.

The definition of electric current i is the time derivative
of electric charge q, and according to Faraday’s law volt-
age v is the time derivative of magnetic flux ϕ. In 1971
Leon Chua noted that there ought to be six mathematical
relations connecting pairs of the four fundamental circuit
variables, i, v, q and ϕ.3 In addition to the definition of
electric current and Faraday’s law, three circuit elements
connect pairs of the four circuit variables: resistance R
is the rate of change of voltage with current (R = dv

di ),
capacitance C is the rate of change of charge with volt-
age (C = dq

dv ), and inductance L is the rate of change of

magnetic flux with current (L = dϕ
di

). From symmetry
arguments, Chua reasoned that there should be a fourth
fundamental element, which he called a memristor (short
for memory resistor) M , for a functional relation between
charge and magnetic flux, M = dϕ

dq
.

FIG. 1: Figure adapted from Nature.

In the case of linear elements, in which M is a con-
stant, memristance is identical to resistance. However,
if M is itself a function of q, yielding a nonlinear circuit
element, then no combination of resistive, capacitive and
inductive circuit elements can duplicate the properties
of a memristor. Almost 40 years after Chua’s proposal,
memristor was found by scientists at HP Labs led by
R. Stanley Williams.1,2 They suspected that memristive
phenomenon has been hidden for so long because those
interested were searching in the wrong places. Although
the definition of memristor involves magnetic flux, mag-
netic field does not play an explicit role in the mechanism
of memristance. As stated in their paper, the mathe-
matics simply require there to be a nonlinear relationship
between the integrals of the current and voltage [italics
added]. The explicit relationship between such integrals
based on the model by Strukov et all is detailed below.

After the original proposal of the memristor, Chua and
Kang generalized the concept to a broader class of sys-
tems, called memristive systems,4 defined as

v = R(x) i (1)

dx

dt
= f(x, i) (2)

Eq. (1) looks like Ohm’s law, but the generalized resis-
tance R(x) depends upon the internal state x of the de-
vice. The time derivative of the internal state is a func-
tion of x and i. Strukov et al were the first to conceive
a physical model in which x is simply proportional to
charge q. They designed a device with R that can switch
reversibly between a less conductive OFF state and a
more conductive ON state, depending on x

R(x) = x(t)Ron + [1 − x(t)]Roff (3)

The internal state x(t) is restricted in the interval [0, 1];
when x(t) = 0, R = Roff, and when x(t) = 1, R = Ron.
The time derivative of x(t) is made to be proportional to
current

dx(t)

dt
=

Ron

β
i(t) (4)

in which the parameter β has a dimension of magnetic
flux (in SI units, magnetic flux is measured in V s, or
Wb). The HP scientists produced a semiconductor device
to satisfy this condition, to be discussed shortly. Eq. (1)
is rewritten as

v(t) = {x(t)Ron + [1 − x(t)]Roff}i(t) (5)

Einstein of Circuit Theory ?
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CIRCUIT ELEMENTS

• A circuit element is:

any device that imposes a 
relationship between two 
circuit variables

• Resistor :    

• Capacitor : 

• Inductor:   
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realize the nonlinear effects in electric circuit, which is
ubiquitous in nanoscale electronics.
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of electric charge q, and according to Faraday’s law volt-
age v is the time derivative of magnetic flux ϕ. In 1971
Leon Chua noted that there ought to be six mathematical
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). From symmetry
arguments, Chua reasoned that there should be a fourth
fundamental element, which he called a memristor (short
for memory resistor) M , for a functional relation between
charge and magnetic flux, M = dϕ

dq
.

FIG. 1: Figure adapted from Nature.

In the case of linear elements, in which M is a con-
stant, memristance is identical to resistance. However,
if M is itself a function of q, yielding a nonlinear circuit
element, then no combination of resistive, capacitive and
inductive circuit elements can duplicate the properties
of a memristor. Almost 40 years after Chua’s proposal,
memristor was found by scientists at HP Labs led by
R. Stanley Williams.1,2 They suspected that memristive
phenomenon has been hidden for so long because those
interested were searching in the wrong places. Although
the definition of memristor involves magnetic flux, mag-
netic field does not play an explicit role in the mechanism
of memristance. As stated in their paper, the mathe-
matics simply require there to be a nonlinear relationship
between the integrals of the current and voltage [italics
added]. The explicit relationship between such integrals
based on the model by Strukov et all is detailed below.

After the original proposal of the memristor, Chua and
Kang generalized the concept to a broader class of sys-
tems, called memristive systems,4 defined as

v = R(x) i (1)

dx

dt
= f(x, i) (2)

Eq. (1) looks like Ohm’s law, but the generalized resis-
tance R(x) depends upon the internal state x of the de-
vice. The time derivative of the internal state is a func-
tion of x and i. Strukov et al were the first to conceive
a physical model in which x is simply proportional to
charge q. They designed a device with R that can switch
reversibly between a less conductive OFF state and a
more conductive ON state, depending on x

R(x) = x(t)Ron + [1 − x(t)]Roff (3)

The internal state x(t) is restricted in the interval [0, 1];
when x(t) = 0, R = Roff, and when x(t) = 1, R = Ron.
The time derivative of x(t) is made to be proportional to
current

dx(t)

dt
=

Ron

β
i(t) (4)

in which the parameter β has a dimension of magnetic
flux (in SI units, magnetic flux is measured in V s, or
Wb). The HP scientists produced a semiconductor device
to satisfy this condition, to be discussed shortly. Eq. (1)
is rewritten as

v(t) = {x(t)Ron + [1 − x(t)]Roff}i(t) (5)

• Resistor :    

• Capacitor : 

• Inductor:   
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memristor.1,2 In that paper, Strukov et al presented a
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a simple explanation for several puzzling phenomena in
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equations for the memristor model described in that pa-
per, and use it to calculate the current responding to a
sinusoidal voltage. Through this exercise, students will
realize the nonlinear effects in electric circuit, which is
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The definition of electric current i is the time derivative
of electric charge q, and according to Faraday’s law volt-
age v is the time derivative of magnetic flux ϕ. In 1971
Leon Chua noted that there ought to be six mathematical
relations connecting pairs of the four fundamental circuit
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is the rate of change of voltage with current (R = dv

di ),
capacitance C is the rate of change of charge with volt-
age (C = dq

dv ), and inductance L is the rate of change of

magnetic flux with current (L = dϕ
di

). From symmetry
arguments, Chua reasoned that there should be a fourth
fundamental element, which he called a memristor (short
for memory resistor) M , for a functional relation between
charge and magnetic flux, M = dϕ

dq
.

FIG. 1: Figure adapted from Nature.

In the case of linear elements, in which M is a con-
stant, memristance is identical to resistance. However,
if M is itself a function of q, yielding a nonlinear circuit
element, then no combination of resistive, capacitive and
inductive circuit elements can duplicate the properties
of a memristor. Almost 40 years after Chua’s proposal,
memristor was found by scientists at HP Labs led by
R. Stanley Williams.1,2 They suspected that memristive
phenomenon has been hidden for so long because those
interested were searching in the wrong places. Although
the definition of memristor involves magnetic flux, mag-
netic field does not play an explicit role in the mechanism
of memristance. As stated in their paper, the mathe-
matics simply require there to be a nonlinear relationship
between the integrals of the current and voltage [italics
added]. The explicit relationship between such integrals
based on the model by Strukov et all is detailed below.

After the original proposal of the memristor, Chua and
Kang generalized the concept to a broader class of sys-
tems, called memristive systems,4 defined as

v = R(x) i (1)

dx

dt
= f(x, i) (2)

Eq. (1) looks like Ohm’s law, but the generalized resis-
tance R(x) depends upon the internal state x of the de-
vice. The time derivative of the internal state is a func-
tion of x and i. Strukov et al were the first to conceive
a physical model in which x is simply proportional to
charge q. They designed a device with R that can switch
reversibly between a less conductive OFF state and a
more conductive ON state, depending on x

R(x) = x(t)Ron + [1 − x(t)]Roff (3)

The internal state x(t) is restricted in the interval [0, 1];
when x(t) = 0, R = Roff, and when x(t) = 1, R = Ron.
The time derivative of x(t) is made to be proportional to
current

dx(t)

dt
=

Ron

β
i(t) (4)

in which the parameter β has a dimension of magnetic
flux (in SI units, magnetic flux is measured in V s, or
Wb). The HP scientists produced a semiconductor device
to satisfy this condition, to be discussed shortly. Eq. (1)
is rewritten as

v(t) = {x(t)Ron + [1 − x(t)]Roff}i(t) (5)

• Resistor :    

• Capacitor : 

• Inductor:   

• Memristor :
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ture announcing the invention of the fourth element—
memristor.1,2 In that paper, Strukov et al presented a
model to illustrate their invention. Their model provides
a simple explanation for several puzzling phenomena in
nanodevices, yet it involves no more mathematics than
basic algebra and simple integration and differentiation,
and is comprehensible for college students with knowl-
edge of first-year physics and calculus. In this note, we
guide students to derive the analytical solution to the
equations for the memristor model described in that pa-
per, and use it to calculate the current responding to a
sinusoidal voltage. Through this exercise, students will
realize the nonlinear effects in electric circuit, which is
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The definition of electric current i is the time derivative
of electric charge q, and according to Faraday’s law volt-
age v is the time derivative of magnetic flux ϕ. In 1971
Leon Chua noted that there ought to be six mathematical
relations connecting pairs of the four fundamental circuit
variables, i, v, q and ϕ.3 In addition to the definition of
electric current and Faraday’s law, three circuit elements
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is the rate of change of voltage with current (R = dv

di ),
capacitance C is the rate of change of charge with volt-
age (C = dq

dv ), and inductance L is the rate of change of

magnetic flux with current (L = dϕ
di

). From symmetry
arguments, Chua reasoned that there should be a fourth
fundamental element, which he called a memristor (short
for memory resistor) M , for a functional relation between
charge and magnetic flux, M = dϕ

dq
.

FIG. 1: Figure adapted from Nature.

In the case of linear elements, in which M is a con-
stant, memristance is identical to resistance. However,
if M is itself a function of q, yielding a nonlinear circuit
element, then no combination of resistive, capacitive and
inductive circuit elements can duplicate the properties
of a memristor. Almost 40 years after Chua’s proposal,
memristor was found by scientists at HP Labs led by
R. Stanley Williams.1,2 They suspected that memristive
phenomenon has been hidden for so long because those
interested were searching in the wrong places. Although
the definition of memristor involves magnetic flux, mag-
netic field does not play an explicit role in the mechanism
of memristance. As stated in their paper, the mathe-
matics simply require there to be a nonlinear relationship
between the integrals of the current and voltage [italics
added]. The explicit relationship between such integrals
based on the model by Strukov et all is detailed below.

After the original proposal of the memristor, Chua and
Kang generalized the concept to a broader class of sys-
tems, called memristive systems,4 defined as

v = R(x) i (1)

dx

dt
= f(x, i) (2)

Eq. (1) looks like Ohm’s law, but the generalized resis-
tance R(x) depends upon the internal state x of the de-
vice. The time derivative of the internal state is a func-
tion of x and i. Strukov et al were the first to conceive
a physical model in which x is simply proportional to
charge q. They designed a device with R that can switch
reversibly between a less conductive OFF state and a
more conductive ON state, depending on x

R(x) = x(t)Ron + [1 − x(t)]Roff (3)

The internal state x(t) is restricted in the interval [0, 1];
when x(t) = 0, R = Roff, and when x(t) = 1, R = Ron.
The time derivative of x(t) is made to be proportional to
current

dx(t)

dt
=

Ron

β
i(t) (4)

in which the parameter β has a dimension of magnetic
flux (in SI units, magnetic flux is measured in V s, or
Wb). The HP scientists produced a semiconductor device
to satisfy this condition, to be discussed shortly. Eq. (1)
is rewritten as

v(t) = {x(t)Ron + [1 − x(t)]Roff}i(t) (5)
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for memory resistor) M , for a functional relation between
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dq
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FIG. 1: Figure adapted from Nature.

In the case of linear elements, in which M is a con-
stant, memristance is identical to resistance. However,
if M is itself a function of q, yielding a nonlinear circuit
element, then no combination of resistive, capacitive and
inductive circuit elements can duplicate the properties
of a memristor. Almost 40 years after Chua’s proposal,
memristor was found by scientists at HP Labs led by
R. Stanley Williams.1,2 They suspected that memristive
phenomenon has been hidden for so long because those
interested were searching in the wrong places. Although
the definition of memristor involves magnetic flux, mag-
netic field does not play an explicit role in the mechanism
of memristance. As stated in their paper, the mathe-
matics simply require there to be a nonlinear relationship
between the integrals of the current and voltage [italics
added]. The explicit relationship between such integrals
based on the model by Strukov et all is detailed below.

After the original proposal of the memristor, Chua and
Kang generalized the concept to a broader class of sys-
tems, called memristive systems,4 defined as

v = R(x) i (1)

dx

dt
= f(x, i) (2)

Eq. (1) looks like Ohm’s law, but the generalized resis-
tance R(x) depends upon the internal state x of the de-
vice. The time derivative of the internal state is a func-
tion of x and i. Strukov et al were the first to conceive
a physical model in which x is simply proportional to
charge q. They designed a device with R that can switch
reversibly between a less conductive OFF state and a
more conductive ON state, depending on x

R(x) = x(t)Ron + [1 − x(t)]Roff (3)

The internal state x(t) is restricted in the interval [0, 1];
when x(t) = 0, R = Roff, and when x(t) = 1, R = Ron.
The time derivative of x(t) is made to be proportional to
current
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dt
=
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in which the parameter β has a dimension of magnetic
flux (in SI units, magnetic flux is measured in V s, or
Wb). The HP scientists produced a semiconductor device
to satisfy this condition, to be discussed shortly. Eq. (1)
is rewritten as

v(t) = {x(t)Ron + [1 − x(t)]Roff}i(t) (5)

• Aristotle• Chua
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MEMRISTOR IS 
FUNDAMENTAL

• Because M cannot be 
replicated by combining 
other passive elements: 
R,L,C

• Transistor is not fundamental

• R,L,C are LTI (Linear-time-
invariant).    M is not.

CHUA: MEMRISTOR-MISSING CIRCUIT ELEMENT 509 
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Fig. 2. Practical active circuit realization of type-l M-R mutator based on realization 1 of Table I. 

is characterized by a cp-q curve.2 This element will hence- 
forth be called the memristor because, as will be shown later, 
it behaves somewhat like a nonlinear resistor with memory. 

The proposed symbol of a memristor and a hypothetical 
cp-q curve are shown in Fig. l(a). Using a ,mutator [3], a 
memristor with any prescribed p-q curve can be realized 
by connecting an appropriate nonlinear resistor, inductor, or 
capacitor across port 2 of an M-R mutator, an M-L 
mutator, and an M-C mutator, as shown in Fig. l(b), (c), 
and (d), respectively. These mutators, of which there are 
two types of each, are defined and characterized in Table I.3 
Hence, a type-l M-R mutator would transform the uR-if< 
curve of the nonlinear resistor f(u,+ iR)=O into the corre- 
sponding p-q curvef(cp, q)=O of a memristor. In contrast 
to this, a type-2 M-R mutator would transform the iR-vR 
curve of the nonlinear resistor f(iR, uR)=O into the corre- 
sponding p-q curvef(9, q) = 0 of a memristor. An analogous 
transformation is realized with an M-L mutator (M-C 
mutator) with respect to the ((PL, iL) or (iL, cp~) [(UC, qc) or 
(qc, UC)] curve of a nonlinear inductor (capacitor). 

Each of the mutators shown in Table I can be realized 
by a two-port active network containing either one or two 
controlled sources, as shown by the various realizations in 
Table 1. Since it is easier to synthesize a nonlinear resistor 
with a prescribed u-i curve [l], only operational models of 
k-R mutators have been built. A typical active circuit 
realizatian based on realization 1 (Table I) of a type-l 
M-R mutator is given in Fig. 2. In order to verify that a 
memristor is indeed realized across port 1 of an M-R muta- 
tor when a nonlinear resistor is connected across port 2, it 

2 The postulation of new elements for the purpose of completeness 
of a physical system is not without scientific precedent. Indeed, the 
celebrated discovery of the periodic table for chemical elements by 
Mendeleeff in 1869 is a case in point [2]. 

3 Observe that a type-l (type-2)‘M-L mutator is identical to a type-l 
(type-2) C-R mutator (L- R’mutator). Similarly, a type-l (type-2) M-C 
mutaror is identical to a type-l (type-2) L-R mutator (C-R mutator). 

would be necessary to design a p-q curL;e tracer. The com- 
plete schematic diagram of a practical p-q curve tracer is 
shown in Fig. 3.4 Using this tracer, the p-q curves of three 
memristors realized by the type-l M-R mutator circuit of 
Fig. 2 are shown in Fig. 4(b), (d), and (f) corresponding to 
the nonlinear resistor V-Z curve shown in Fig. 4(c), (e), and 
(g), respectively. To demonstrate the rather “peculiar” 
voltage and current waveforms generated by the simple 
memristor circuit shown in Fig. 5(a), three representative 
memristors were synthesized with q--q curves as shown in Fig. 
5(b), (d), and (f), respectively. The oscilloscope tracings of 
the voltage u(t) and current i(t) of each memristor are shown 
in Fig. 5(c), (e), and (g), respectively. The waveforms in 
Fig. 5(c) and (e) are measured with a 63-Hz sinusoidal input 
signal, while the waveforms shown in Fig. 5(g) are measured 
with a 63-Hz triangular input signal. It is interesting to ob- 
serve that these waveforms are rather peculiar in spite of the 
fact that the cp-q curve of the three memristors are relatively 
smooth. It should not be surprising, therefore, for us to 
find that the memristor possesses certain unique signal- 
processing properties not shared by any of the three existing 
classical elements. In fact, it is precisely these properties that 
have led us to believe that memristors will play an important 
role in circuit theory, especially in the area of device model- 
ing and unconventional signal-processing applications. Some 
of these applications will be presented in Section V. 

III. CIRCUIT-THEORETIC PROPERTIES OF MEMRISTORS 

By definition a memristor is characterized by a relufiorz 
of the type g(;p, q)=O. It is said to be charge-controlled 
(flux-controlled) if this relation can be expressed as a single- 
valued function of the charge rZ (flux-linkage a). The voltage 

4 For additional details concerning the design and operational char- 
acteristics of the circuits shown in Figs. 2 and 3, as well as that for a 
type-2 M-R mutator, see [4]. 

Authorized licensed use limited to: IEEE Publications Staff. Downloaded on December 4, 2008 at 14:12 from IEEE Xplore.  Restrictions apply.
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is characterized by a <P-q curve.2 This element will hence-
forth be called the mernristor because, as will be shown later,
it behaves somewhat like a nonlinear resistor with memory.
The proposed symbol of a memristor and a hypothetical

<P-q curve are shown in Fig. lea). Using a mutator [3], a
memristor with any prescribed <P-q curve can be realized
by connecting an appropriate nonlinear resistor, inductor, or
capacitor across port 2 of an M-R mutator, anM-L
mutator, and an M-C mutator, as shown in Fig. l(b), (c),
and (d), respectively. These mutators, of which there are
two types of each, are defined and characterized in Table J.3
Hence, a type-l M-R mutator would transform the vR-ili
curve of the nonlinear resistor f( vIi, iii) = 0 into the corre-
sponding <p-q curvef(<p, q)=O of a memristor. In contrast
to this, a type-2 M-R mutator would transform the ili-VR

curve of the nonlinear resistor fUIi, VIi)=O into the corre-
sponding <P-q curvef(<p, q) = 0 of a memristor. An analogous
transformation is realized with an M-L mutator (M-C
mutator) with respect to the (<PL' iL) or (iL, <pd [(vc, qc) or
(qc, vc)] curve of a nonlinear inductor (capacitor).
Each of the mutators shown in Table I can be realized

by a two-port qctive network containing either one or two
controlled as shown by the various realizations in
Table I. Since it is easier to synthesize a nonlinear resistor
with a prescribed v-i curve [I], only models of
M-R mutators have been built. A typical active circuit
realization based on realization I (Table I) of a type-l
M-R mutator is given in Fig. 2. In order to verify that a
memristor is indeed realized across port I of an M-R muta-
tor when q nonline'ar resistor is connected across port 2, it

2 The postulation of new elements for the purpose of completeness
of a physical system is not without scientific precedent. Indeed, the
celebrated discovery of the periodic table for chemical elements by
Mendeleeff in 1869 is a ca'se. in point [2].

S Observe that a type-I (type-2) M-L mutator is identical to a type-!
(type-2) C-R mutator (L-Rmutator). Similarly, a type-! (type-2) M-C
mutator is identical to a type-! (type-2) L-R mutator (C-R mutator).

would be necessary to design a <P-q curve tracer. The com-
plete schematic diagram of a practical <p-q curve tracer is
shown in Fig. 3. 4 Using this tracer, the <p-q curves of three
memristors realized by the type-l M-R mutator circuit of
Fig. 2 are shown in Fig. 4(b), (d), and (f) corresponding to
the nonlinear resistor V-I curve shown in Fig. 4(c), (e), and
(g), respectively. To demonstrate the rather "peculiar"
voltage and current waveforms generated by the simple
memristor circuit shown in Fig. 5(a), three representative
memristors were synthesized with <p'-q curves as shown in Fig.
S(b), (d), and (0, respectively. The oscilloscope tracings of
the voltage v(t) and current i(t) of each memristor are shown
in Fig. S(c), (e), and (g), respectively. The waveforms in
Fig. S(c) and (e) are measured with a 63-Hz sinusoidal input
signal, while the waveforms shown in Fig. S(g) are measured
with a 63-Hz triangular input signal. It is interesting to ob-
serve that these waveforms are rather peculiar in spite of the
fact that the <P-q curve of the three memristors are relatively
smooth. It should not be surprising, therefore, for us to
find that the memristor possesses certain unique signal-
processing properties not shared by any of the three existing
classical elements. In fact, it is precisely these properties that
have led us to believe that memristors will play an important
role in circuit theory, especially in the area of device model-
ing and unconventional signal-processing applications. Some
of these applications will be presented in Section V.

Ql. CIRCUIT-THEORETIC PROPERTIES OF MEMRISTORS

By definition a memristor is characterized by a relation
of the type g(<p, q)=O. It is said to be charge-controlled
(flux-controlled) if this relation can be expressed as a single-
valued function of the charge q (flux-linkage <p). The voltage

4 For additional details concerning the design and operational char-
acteristics of the circuits shown in Figs. 2 and 3, as well as that for a
type-2 M-R mutator, see [41.
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The missing memristor found
Dmitri B. Strukov1, Gregory S. Snider1, Duncan R. Stewart1 & R. Stanley Williams1

Anyone who ever took an electronics laboratory class will be fami-
liar with the fundamental passive circuit elements: the resistor, the
capacitor and the inductor. However, in 1971 Leon Chua reasoned
from symmetry arguments that there should be a fourth fun-
damental element, which he called a memristor (short for memory
resistor)1. Although he showed that such an element has many
interesting and valuable circuit properties, until now no one has
presented either a useful physical model or an example of a mem-
ristor. Here we show, using a simple analytical example, that mem-
ristance arises naturally in nanoscale systems in which solid-state
electronic and ionic transport are coupled under an external bias
voltage. These results serve as the foundation for understanding a
wide range of hysteretic current–voltage behaviour observed in
many nanoscale electronic devices2–19 that involve the motion of
charged atomic or molecular species, in particular certain tita-
nium dioxide cross-point switches20–22.

More specifically, Chua noted that there are six different math-
ematical relations connecting pairs of the four fundamental circuit
variables: electric current i, voltage v, charge q and magnetic flux Q.
One of these relations (the charge is the time integral of the current)
is determined from the definitions of two of the variables, and
another (the flux is the time integral of the electromotive force, or
voltage) is determined from Faraday’s law of induction. Thus, there
should be four basic circuit elements described by the remaining
relations between the variables (Fig. 1). The ‘missing’ element—the
memristor, with memristance M—provides a functional relation
between charge and flux, dQ 5 Mdq.

In the case of linear elements, in which M is a constant, memri-
stance is identical to resistance and, thus, is of no special interest.
However, if M is itself a function of q, yielding a nonlinear circuit
element, then the situation is more interesting. The i–v characteristic
of such a nonlinear relation between q and Q for a sinusoidal input
is generally a frequency-dependent Lissajous figure1, and no com-
bination of nonlinear resistive, capacitive and inductive components
can duplicate the circuit properties of a nonlinear memristor
(although including active circuit elements such as amplifiers can
do so)1. Because most valuable circuit functions are attributable to
nonlinear device characteristics, memristors compatible with inte-
grated circuits could provide new circuit functions such as electronic
resistance switching at extremely high two-terminal device densities.
However, until now there has not been a material realization of a
memristor.

The most basic mathematical definition of a current-controlled
memristor for circuit analysis is the differential form

v~R(w)i ð1Þ

dw

dt
~i ð2Þ

where w is the state variable of the device and R is a generalized
resistance that depends upon the internal state of the device. In this
case the state variable is just the charge, but no one has been able to

propose a physical model that satisfies these simple equations. In
1976 Chua and Kang generalized the memristor concept to a much
broader class of nonlinear dynamical systems they called memristive
systems23, described by the equations

v~R(w,i)i ð3Þ

dw

dt
~f (w,i) ð4Þ

where w can be a set of state variables and R and f can in general be
explicit functions of time. Here, for simplicity, we restrict the discus-
sion to current-controlled, time-invariant, one-port devices. Note
that, unlike in a memristor, the flux in memristive systems is no
longer uniquely defined by the charge. However, equation (3) does
serve to distinguish a memristive system from an arbitrary dynamical
device; no current flows through the memristive system when the
voltage drop across it is zero. Chua and Kang showed that the i–v
characteristics of some devices and systems, notably thermistors,
Josephson junctions, neon bulbs and even the Hodgkin–Huxley
model of the neuron, can be modelled using memristive equations23.
Nevertheless, there was no direct connection between the mathe-
matics and the physical properties of any practical system, and
hence, almost forty years later, the concepts have not been widely
adopted.

Here we present a physical model of a two-terminal electrical
device that behaves like a perfect memristor for a certain restricted

1HP Labs, 1501 Page Mill Road, Palo Alto, California 94304, USA.

Resistor
dv = Rdi

Capacitor
dq = Cdv

Inductor
dj = Ldi

Memristor
dj = Mdq

Memristive systems

q

v

i

j

dj
 =

 v
dt

dq = idt

Figure 1 | The four fundamental two-terminal circuit elements: resistor,
capacitor, inductor and memristor. Resistors and memristors are subsets of
a more general class of dynamical devices, memristive systems. Note that R,
C, L and M can be functions of the independent variable in their defining
equations, yielding nonlinear elements. For example, a charge-controlled
memristor is defined by a single-valued function M(q).
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memristor, with memristance M—provides a functional relation
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element, then the situation is more interesting. The i–v characteristic
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is generally a frequency-dependent Lissajous figure1, and no com-
bination of nonlinear resistive, capacitive and inductive components
can duplicate the circuit properties of a nonlinear memristor
(although including active circuit elements such as amplifiers can
do so)1. Because most valuable circuit functions are attributable to
nonlinear device characteristics, memristors compatible with inte-
grated circuits could provide new circuit functions such as electronic
resistance switching at extremely high two-terminal device densities.
However, until now there has not been a material realization of a
memristor.

The most basic mathematical definition of a current-controlled
memristor for circuit analysis is the differential form

v~R(w)i ð1Þ
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~i ð2Þ

where w is the state variable of the device and R is a generalized
resistance that depends upon the internal state of the device. In this
case the state variable is just the charge, but no one has been able to

propose a physical model that satisfies these simple equations. In
1976 Chua and Kang generalized the memristor concept to a much
broader class of nonlinear dynamical systems they called memristive
systems23, described by the equations

v~R(w,i)i ð3Þ

dw
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~f (w,i) ð4Þ

where w can be a set of state variables and R and f can in general be
explicit functions of time. Here, for simplicity, we restrict the discus-
sion to current-controlled, time-invariant, one-port devices. Note
that, unlike in a memristor, the flux in memristive systems is no
longer uniquely defined by the charge. However, equation (3) does
serve to distinguish a memristive system from an arbitrary dynamical
device; no current flows through the memristive system when the
voltage drop across it is zero. Chua and Kang showed that the i–v
characteristics of some devices and systems, notably thermistors,
Josephson junctions, neon bulbs and even the Hodgkin–Huxley
model of the neuron, can be modelled using memristive equations23.
Nevertheless, there was no direct connection between the mathe-
matics and the physical properties of any practical system, and
hence, almost forty years later, the concepts have not been widely
adopted.

Here we present a physical model of a two-terminal electrical
device that behaves like a perfect memristor for a certain restricted
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equations, yielding nonlinear elements. For example, a charge-controlled
memristor is defined by a single-valued function M(q).

Vol 453 | 1 May 2008 | doi:10.1038/nature06932

80
Nature   Publishing Group©2008

range of the state variable w and as a memristive system for another,
wider (but still bounded), range of w. This intuitive model produces
rich hysteretic behaviour controlled by the intrinsic nonlinearity of
M and the boundary conditions on the state variable w. The results
provide a simplified explanation for reports of current–voltage
anomalies, including switching and hysteretic conductance, multiple
conductance states and apparent negative differential resistance,
especially in thin-film, two-terminal nanoscale devices, that have
been appearing in the literature for nearly 50 years2–4.

Electrical switching in thin-film devices has recently attracted
renewed attention, because such a technology may enable functional
scaling of logic and memory circuits well beyond the limits of com-
plementary metal–oxide–semiconductors24,25. The microscopic
nature of resistance switching and charge transport in such devices
is still under debate, but one proposal is that the hysteresis
requires some sort of atomic rearrangement that modulates the
electronic current. On the basis of this proposition, we consider a
thin semiconductor film of thickness D sandwiched between two
metal contacts, as shown in Fig. 2a. The total resistance of the
device is determined by two variable resistors connected in series
(Fig. 2a), where the resistances are given for the full length D of
the device. Specifically, the semiconductor film has a region with a
high concentration of dopants (in this example assumed to be pos-
itive ions) having low resistance RON, and the remainder has a low
(essentially zero) dopant concentration and much higher resistance
ROFF.

The application of an external bias v(t) across the device will move
the boundary between the two regions by causing the charged
dopants to drift26. For the simplest case of ohmic electronic conduc-
tion and linear ionic drift in a uniform field with average ion mobility

mV, we obtain

v(t)~ RON
w(t)

D
zROFF 1{

w(t)

D

! "! "
i(t) ð5Þ

dw(t)

dt
~mV

RON

D
i(t) ð6Þ

which yields the following formula for w(t):

w(t)~mV

RON

D
q(t) ð7Þ

By inserting equation (7) into equation (5) we obtain the memri-
stance of this system, which for RON=ROFF simplifies to:

M(q)~ROFF 1{
mVRON

D2
q(t)

! "

The q-dependent term in parentheses on the right-hand side of this
equation is the crucial contribution to the memristance, and it
becomes larger in absolute value for higher dopant mobilities mV

and smaller semiconductor film thicknesses D. For any material, this
term is 1,000,000 times larger in absolute value at the nanometre scale
than it is at the micrometre scale, because of the factor of 1/D2, and
the memristance is correspondingly more significant. Thus, memri-
stance becomes more important for understanding the electronic
characteristics of any device as the critical dimensions shrink to the
nanometre scale.

The coupled equations of motion for the charged dopants and the
electrons in this system take the normal form for a current-controlled
(or charge-controlled) memristor (equations (1) and (2)). The
fact that the magnetic field does not play an explicit role in the
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Figure 2 | The coupled variable-resistor model for a memristor. a, Diagram
with a simplified equivalent circuit. V, voltmeter; A, ammeter. b, c, The
applied voltage (blue) and resulting current (green) as a function of time t for
a typical memristor. In b the applied voltage is v0sin(v0t) and the resistance
ratio is ROFF=RON~160, and in c the applied voltage is 6v0sin2(v0t) and
ROFF=RON~380, where v0 is the magnitude of the applied voltage and v0 is
the frequency. The numbers 1–6 label successive waves in the applied voltage
and the corresponding loops in the i–v curves. In each plot the axes are
dimensionless, with voltage, current, time, flux and charge expressed in units
of v0 5 1 V, i0:v0=RON~10 mA, t0 ; 2p/v0 ; D2/mVv0 5 10 ms, v0t0 and

i0t0, respectively. Here i0 denotes the maximum possible current through the
device, and t0 is the shortest time required for linear drift of dopants across
the full device length in a uniform field v0/D, for example with D 5 10 nm
and mV 5 10210 cm2 s21 V21. We note that, for the parameters chosen, the
applied bias never forces either of the two resistive regions to collapse; for
example, w/D does not approach zero or one (shown with dashed lines in the
middle plots in b and c). Also, the dashed i–v plot in b demonstrates the
hysteresis collapse observed with a tenfold increase in sweep frequency. The
insets in the i–v plots in b and c show that for these examples the charge is a
single-valued function of the flux, as it must be in a memristor.
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range of the state variable w and as a memristive system for another,
wider (but still bounded), range of w. This intuitive model produces
rich hysteretic behaviour controlled by the intrinsic nonlinearity of
M and the boundary conditions on the state variable w. The results
provide a simplified explanation for reports of current–voltage
anomalies, including switching and hysteretic conductance, multiple
conductance states and apparent negative differential resistance,
especially in thin-film, two-terminal nanoscale devices, that have
been appearing in the literature for nearly 50 years2–4.

Electrical switching in thin-film devices has recently attracted
renewed attention, because such a technology may enable functional
scaling of logic and memory circuits well beyond the limits of com-
plementary metal–oxide–semiconductors24,25. The microscopic
nature of resistance switching and charge transport in such devices
is still under debate, but one proposal is that the hysteresis
requires some sort of atomic rearrangement that modulates the
electronic current. On the basis of this proposition, we consider a
thin semiconductor film of thickness D sandwiched between two
metal contacts, as shown in Fig. 2a. The total resistance of the
device is determined by two variable resistors connected in series
(Fig. 2a), where the resistances are given for the full length D of
the device. Specifically, the semiconductor film has a region with a
high concentration of dopants (in this example assumed to be pos-
itive ions) having low resistance RON, and the remainder has a low
(essentially zero) dopant concentration and much higher resistance
ROFF.

The application of an external bias v(t) across the device will move
the boundary between the two regions by causing the charged
dopants to drift26. For the simplest case of ohmic electronic conduc-
tion and linear ionic drift in a uniform field with average ion mobility

mV, we obtain

v(t)~ RON
w(t)

D
zROFF 1{

w(t)

D

! "! "
i(t) ð5Þ

dw(t)

dt
~mV

RON

D
i(t) ð6Þ

which yields the following formula for w(t):

w(t)~mV

RON

D
q(t) ð7Þ

By inserting equation (7) into equation (5) we obtain the memri-
stance of this system, which for RON=ROFF simplifies to:

M(q)~ROFF 1{
mVRON

D2
q(t)

! "

The q-dependent term in parentheses on the right-hand side of this
equation is the crucial contribution to the memristance, and it
becomes larger in absolute value for higher dopant mobilities mV

and smaller semiconductor film thicknesses D. For any material, this
term is 1,000,000 times larger in absolute value at the nanometre scale
than it is at the micrometre scale, because of the factor of 1/D2, and
the memristance is correspondingly more significant. Thus, memri-
stance becomes more important for understanding the electronic
characteristics of any device as the critical dimensions shrink to the
nanometre scale.

The coupled equations of motion for the charged dopants and the
electrons in this system take the normal form for a current-controlled
(or charge-controlled) memristor (equations (1) and (2)). The
fact that the magnetic field does not play an explicit role in the
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Figure 2 | The coupled variable-resistor model for a memristor. a, Diagram
with a simplified equivalent circuit. V, voltmeter; A, ammeter. b, c, The
applied voltage (blue) and resulting current (green) as a function of time t for
a typical memristor. In b the applied voltage is v0sin(v0t) and the resistance
ratio is ROFF=RON~160, and in c the applied voltage is 6v0sin2(v0t) and
ROFF=RON~380, where v0 is the magnitude of the applied voltage and v0 is
the frequency. The numbers 1–6 label successive waves in the applied voltage
and the corresponding loops in the i–v curves. In each plot the axes are
dimensionless, with voltage, current, time, flux and charge expressed in units
of v0 5 1 V, i0:v0=RON~10 mA, t0 ; 2p/v0 ; D2/mVv0 5 10 ms, v0t0 and

i0t0, respectively. Here i0 denotes the maximum possible current through the
device, and t0 is the shortest time required for linear drift of dopants across
the full device length in a uniform field v0/D, for example with D 5 10 nm
and mV 5 10210 cm2 s21 V21. We note that, for the parameters chosen, the
applied bias never forces either of the two resistive regions to collapse; for
example, w/D does not approach zero or one (shown with dashed lines in the
middle plots in b and c). Also, the dashed i–v plot in b demonstrates the
hysteresis collapse observed with a tenfold increase in sweep frequency. The
insets in the i–v plots in b and c show that for these examples the charge is a
single-valued function of the flux, as it must be in a memristor.
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range of the state variable w and as a memristive system for another,
wider (but still bounded), range of w. This intuitive model produces
rich hysteretic behaviour controlled by the intrinsic nonlinearity of
M and the boundary conditions on the state variable w. The results
provide a simplified explanation for reports of current–voltage
anomalies, including switching and hysteretic conductance, multiple
conductance states and apparent negative differential resistance,
especially in thin-film, two-terminal nanoscale devices, that have
been appearing in the literature for nearly 50 years2–4.

Electrical switching in thin-film devices has recently attracted
renewed attention, because such a technology may enable functional
scaling of logic and memory circuits well beyond the limits of com-
plementary metal–oxide–semiconductors24,25. The microscopic
nature of resistance switching and charge transport in such devices
is still under debate, but one proposal is that the hysteresis
requires some sort of atomic rearrangement that modulates the
electronic current. On the basis of this proposition, we consider a
thin semiconductor film of thickness D sandwiched between two
metal contacts, as shown in Fig. 2a. The total resistance of the
device is determined by two variable resistors connected in series
(Fig. 2a), where the resistances are given for the full length D of
the device. Specifically, the semiconductor film has a region with a
high concentration of dopants (in this example assumed to be pos-
itive ions) having low resistance RON, and the remainder has a low
(essentially zero) dopant concentration and much higher resistance
ROFF.

The application of an external bias v(t) across the device will move
the boundary between the two regions by causing the charged
dopants to drift26. For the simplest case of ohmic electronic conduc-
tion and linear ionic drift in a uniform field with average ion mobility

mV, we obtain

v(t)~ RON
w(t)

D
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w(t)
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i(t) ð5Þ

dw(t)

dt
~mV
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D
i(t) ð6Þ

which yields the following formula for w(t):

w(t)~mV
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D
q(t) ð7Þ

By inserting equation (7) into equation (5) we obtain the memri-
stance of this system, which for RON=ROFF simplifies to:

M(q)~ROFF 1{
mVRON

D2
q(t)

! "

The q-dependent term in parentheses on the right-hand side of this
equation is the crucial contribution to the memristance, and it
becomes larger in absolute value for higher dopant mobilities mV

and smaller semiconductor film thicknesses D. For any material, this
term is 1,000,000 times larger in absolute value at the nanometre scale
than it is at the micrometre scale, because of the factor of 1/D2, and
the memristance is correspondingly more significant. Thus, memri-
stance becomes more important for understanding the electronic
characteristics of any device as the critical dimensions shrink to the
nanometre scale.

The coupled equations of motion for the charged dopants and the
electrons in this system take the normal form for a current-controlled
(or charge-controlled) memristor (equations (1) and (2)). The
fact that the magnetic field does not play an explicit role in the
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Figure 2 | The coupled variable-resistor model for a memristor. a, Diagram
with a simplified equivalent circuit. V, voltmeter; A, ammeter. b, c, The
applied voltage (blue) and resulting current (green) as a function of time t for
a typical memristor. In b the applied voltage is v0sin(v0t) and the resistance
ratio is ROFF=RON~160, and in c the applied voltage is 6v0sin2(v0t) and
ROFF=RON~380, where v0 is the magnitude of the applied voltage and v0 is
the frequency. The numbers 1–6 label successive waves in the applied voltage
and the corresponding loops in the i–v curves. In each plot the axes are
dimensionless, with voltage, current, time, flux and charge expressed in units
of v0 5 1 V, i0:v0=RON~10 mA, t0 ; 2p/v0 ; D2/mVv0 5 10 ms, v0t0 and

i0t0, respectively. Here i0 denotes the maximum possible current through the
device, and t0 is the shortest time required for linear drift of dopants across
the full device length in a uniform field v0/D, for example with D 5 10 nm
and mV 5 10210 cm2 s21 V21. We note that, for the parameters chosen, the
applied bias never forces either of the two resistive regions to collapse; for
example, w/D does not approach zero or one (shown with dashed lines in the
middle plots in b and c). Also, the dashed i–v plot in b demonstrates the
hysteresis collapse observed with a tenfold increase in sweep frequency. The
insets in the i–v plots in b and c show that for these examples the charge is a
single-valued function of the flux, as it must be in a memristor.
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range of the state variable w and as a memristive system for another,
wider (but still bounded), range of w. This intuitive model produces
rich hysteretic behaviour controlled by the intrinsic nonlinearity of
M and the boundary conditions on the state variable w. The results
provide a simplified explanation for reports of current–voltage
anomalies, including switching and hysteretic conductance, multiple
conductance states and apparent negative differential resistance,
especially in thin-film, two-terminal nanoscale devices, that have
been appearing in the literature for nearly 50 years2–4.

Electrical switching in thin-film devices has recently attracted
renewed attention, because such a technology may enable functional
scaling of logic and memory circuits well beyond the limits of com-
plementary metal–oxide–semiconductors24,25. The microscopic
nature of resistance switching and charge transport in such devices
is still under debate, but one proposal is that the hysteresis
requires some sort of atomic rearrangement that modulates the
electronic current. On the basis of this proposition, we consider a
thin semiconductor film of thickness D sandwiched between two
metal contacts, as shown in Fig. 2a. The total resistance of the
device is determined by two variable resistors connected in series
(Fig. 2a), where the resistances are given for the full length D of
the device. Specifically, the semiconductor film has a region with a
high concentration of dopants (in this example assumed to be pos-
itive ions) having low resistance RON, and the remainder has a low
(essentially zero) dopant concentration and much higher resistance
ROFF.

The application of an external bias v(t) across the device will move
the boundary between the two regions by causing the charged
dopants to drift26. For the simplest case of ohmic electronic conduc-
tion and linear ionic drift in a uniform field with average ion mobility

mV, we obtain

v(t)~ RON
w(t)

D
zROFF 1{

w(t)

D

! "! "
i(t) ð5Þ

dw(t)

dt
~mV

RON

D
i(t) ð6Þ

which yields the following formula for w(t):

w(t)~mV

RON

D
q(t) ð7Þ

By inserting equation (7) into equation (5) we obtain the memri-
stance of this system, which for RON=ROFF simplifies to:

M(q)~ROFF 1{
mVRON

D2
q(t)

! "

The q-dependent term in parentheses on the right-hand side of this
equation is the crucial contribution to the memristance, and it
becomes larger in absolute value for higher dopant mobilities mV

and smaller semiconductor film thicknesses D. For any material, this
term is 1,000,000 times larger in absolute value at the nanometre scale
than it is at the micrometre scale, because of the factor of 1/D2, and
the memristance is correspondingly more significant. Thus, memri-
stance becomes more important for understanding the electronic
characteristics of any device as the critical dimensions shrink to the
nanometre scale.

The coupled equations of motion for the charged dopants and the
electrons in this system take the normal form for a current-controlled
(or charge-controlled) memristor (equations (1) and (2)). The
fact that the magnetic field does not play an explicit role in the
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Figure 2 | The coupled variable-resistor model for a memristor. a, Diagram
with a simplified equivalent circuit. V, voltmeter; A, ammeter. b, c, The
applied voltage (blue) and resulting current (green) as a function of time t for
a typical memristor. In b the applied voltage is v0sin(v0t) and the resistance
ratio is ROFF=RON~160, and in c the applied voltage is 6v0sin2(v0t) and
ROFF=RON~380, where v0 is the magnitude of the applied voltage and v0 is
the frequency. The numbers 1–6 label successive waves in the applied voltage
and the corresponding loops in the i–v curves. In each plot the axes are
dimensionless, with voltage, current, time, flux and charge expressed in units
of v0 5 1 V, i0:v0=RON~10 mA, t0 ; 2p/v0 ; D2/mVv0 5 10 ms, v0t0 and

i0t0, respectively. Here i0 denotes the maximum possible current through the
device, and t0 is the shortest time required for linear drift of dopants across
the full device length in a uniform field v0/D, for example with D 5 10 nm
and mV 5 10210 cm2 s21 V21. We note that, for the parameters chosen, the
applied bias never forces either of the two resistive regions to collapse; for
example, w/D does not approach zero or one (shown with dashed lines in the
middle plots in b and c). Also, the dashed i–v plot in b demonstrates the
hysteresis collapse observed with a tenfold increase in sweep frequency. The
insets in the i–v plots in b and c show that for these examples the charge is a
single-valued function of the flux, as it must be in a memristor.
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range of the state variable w and as a memristive system for another,
wider (but still bounded), range of w. This intuitive model produces
rich hysteretic behaviour controlled by the intrinsic nonlinearity of
M and the boundary conditions on the state variable w. The results
provide a simplified explanation for reports of current–voltage
anomalies, including switching and hysteretic conductance, multiple
conductance states and apparent negative differential resistance,
especially in thin-film, two-terminal nanoscale devices, that have
been appearing in the literature for nearly 50 years2–4.

Electrical switching in thin-film devices has recently attracted
renewed attention, because such a technology may enable functional
scaling of logic and memory circuits well beyond the limits of com-
plementary metal–oxide–semiconductors24,25. The microscopic
nature of resistance switching and charge transport in such devices
is still under debate, but one proposal is that the hysteresis
requires some sort of atomic rearrangement that modulates the
electronic current. On the basis of this proposition, we consider a
thin semiconductor film of thickness D sandwiched between two
metal contacts, as shown in Fig. 2a. The total resistance of the
device is determined by two variable resistors connected in series
(Fig. 2a), where the resistances are given for the full length D of
the device. Specifically, the semiconductor film has a region with a
high concentration of dopants (in this example assumed to be pos-
itive ions) having low resistance RON, and the remainder has a low
(essentially zero) dopant concentration and much higher resistance
ROFF.

The application of an external bias v(t) across the device will move
the boundary between the two regions by causing the charged
dopants to drift26. For the simplest case of ohmic electronic conduc-
tion and linear ionic drift in a uniform field with average ion mobility

mV, we obtain

v(t)~ RON
w(t)

D
zROFF 1{

w(t)

D

! "! "
i(t) ð5Þ

dw(t)

dt
~mV

RON

D
i(t) ð6Þ

which yields the following formula for w(t):

w(t)~mV

RON

D
q(t) ð7Þ

By inserting equation (7) into equation (5) we obtain the memri-
stance of this system, which for RON=ROFF simplifies to:

M(q)~ROFF 1{
mVRON

D2
q(t)

! "

The q-dependent term in parentheses on the right-hand side of this
equation is the crucial contribution to the memristance, and it
becomes larger in absolute value for higher dopant mobilities mV

and smaller semiconductor film thicknesses D. For any material, this
term is 1,000,000 times larger in absolute value at the nanometre scale
than it is at the micrometre scale, because of the factor of 1/D2, and
the memristance is correspondingly more significant. Thus, memri-
stance becomes more important for understanding the electronic
characteristics of any device as the critical dimensions shrink to the
nanometre scale.

The coupled equations of motion for the charged dopants and the
electrons in this system take the normal form for a current-controlled
(or charge-controlled) memristor (equations (1) and (2)). The
fact that the magnetic field does not play an explicit role in the
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Figure 2 | The coupled variable-resistor model for a memristor. a, Diagram
with a simplified equivalent circuit. V, voltmeter; A, ammeter. b, c, The
applied voltage (blue) and resulting current (green) as a function of time t for
a typical memristor. In b the applied voltage is v0sin(v0t) and the resistance
ratio is ROFF=RON~160, and in c the applied voltage is 6v0sin2(v0t) and
ROFF=RON~380, where v0 is the magnitude of the applied voltage and v0 is
the frequency. The numbers 1–6 label successive waves in the applied voltage
and the corresponding loops in the i–v curves. In each plot the axes are
dimensionless, with voltage, current, time, flux and charge expressed in units
of v0 5 1 V, i0:v0=RON~10 mA, t0 ; 2p/v0 ; D2/mVv0 5 10 ms, v0t0 and

i0t0, respectively. Here i0 denotes the maximum possible current through the
device, and t0 is the shortest time required for linear drift of dopants across
the full device length in a uniform field v0/D, for example with D 5 10 nm
and mV 5 10210 cm2 s21 V21. We note that, for the parameters chosen, the
applied bias never forces either of the two resistive regions to collapse; for
example, w/D does not approach zero or one (shown with dashed lines in the
middle plots in b and c). Also, the dashed i–v plot in b demonstrates the
hysteresis collapse observed with a tenfold increase in sweep frequency. The
insets in the i–v plots in b and c show that for these examples the charge is a
single-valued function of the flux, as it must be in a memristor.
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GENERALIZATION: 
MEMRISTIVE SYSTEMS

• Theorem: every system 
with a pinched hysteresis is 
memristive

• any resistive system with internal 
state variables is memristive

• e.g.  thermistor (x = temperature)

current controlled      or      voltage controlled
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HH NEURON MODEL 
IS MEMRISTIVE or memductive
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APPLICATIONS

Williams' solid-state memristors can be combined into devices called crossbar latches, which 
could replace transistors in future computers, given their much higher circuit density.
They can potentially be fashioned into non-volatile solid-state memory, which would allow 
greater data density than hard drives with access times similar to DRAM, replacing both 
components.[56] HP prototyped a crossbar latch memory that can fit 100 gigabits in a square 
centimeter,[9] and proposed a scalable 3D design (consisting of up to 1000 layers or 1 
petabitper cm3).[57] In May 2008 HP reported that its device reaches currently about one-tenth 
the speed of DRAM.[58] The devices' resistance would be read with alternating current so that 
the stored value would not be affected.[59] In May 2012 it was reported that access time had 
been improved to 90 nanoseconds if not faster, approximately one hundred times faster than 
contemporaneous flash memory, while using one percent as much energy.[60]
Memristor patents include applications in programmable logic,[61] signal processing,[62] neural 
networks,[63] control systems,[64] reconfigurable computing,[65] brain-computer 
interfaces[66]and RFID.[67] Memristive devices are potentially used for stateful logic 
implication, allowing a replacement for CMOS-based logic computation. Several early works in 
this direction are reported.[68] [69]

Neural Net Application:
Neuromorphic engineering of synapses http://www.artificialbrains.com/darpa-synapse-program#memristor-chip
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Memristor definition and criticism

According to the original 1971 definition, the memristor was the fourth fundamental circuit element, forming a non-linear relationship between electric charge and 
magnetic flux linkage. In 2011 Chua argued for a broader definition that included all 2-terminal non-volatile memory devices based on resistance switching. Williams 
argued that MRAM, phase change memory and RRAM were memristor technologies. Some researchers argued that biological structures such as blood and skin fit 
the definition. Others argued that the memory device under development by HP Labs and other forms of RRAM were not memristors but rather part of a broader 
class of variable resistance systems [19] and that a broader definition of memristor is a scientifically unjustifiable land grab that favored HP's memristor patents.[20]

Meuffels and Schroeder noted that one of the early memristor papers included a mistaken assumption regarding ionic conduction.[21] Meuffels and Soni discussed 
issues and problems in the realization of memristors.[4] They claimed that the physics behind the HP memristor model conflicts with fundamentals of solid state 
electrochemistry as the coupling of electronic/ionic diffusion currents was not considered. Additionally, they pointed to issues concerning fundamentals of non-
equilibrium thermodynamics: the dynamic state equations set up for memristors like the HP memristor imply the possibility of violating Landauer's principle of the 
minimum amount of energy required to change "information" states in a system.[4] This critique was endorsed by Di Ventra and Pershin.[5]

Nonvolatile information storage requires the existence of energy barriers that separate distinct memory states from each other.[4][5] Memristors whose resistance 
(memory) states depend only on the current (like the HP memristor) or voltage history would be unable to protect their memory states against unavoidable 
fluctuations and thus permanently suffer information loss: the proposed hypothetical concept provides no physical mechanism enabling such systems to retain 
memory states after the applied current or voltage stress is removed. Such elements can therefore not exist, as they would always be susceptible to a so-called 
"stochastic catastrophe".[5]

Other researchers noted that memristor models based on the assumption of linear ionic drift do not account for asymmetry between set time (high-to-low resistance 
switching) and reset time (low-to-high resistance switching) and do not provide ionic mobility values consistent with experimental data. Non-linear ionic drift models 
have been proposed to compensate for this deficiency.[22]

Yet another article from researchers of ReRAM concluded that "If the basic equations do not reflect the actual device physics well, as we see for the basic 
memristor equations, with or without window functions, low predictivity is given..".[23]

Martin Reynolds, an electrical engineering analyst with research outfit Gartner, commented that while HP was being sloppy in calling their device a memristor, critics 
were being pedantic in saying it was not a memristor.[24]
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THERE’S MORE
782 L. Chua

lated exactly by an ideal memristor having the memristance
R(q) = R1 at the origin, and R(q) = R2 at another point, say
q = q2 of a smooth ϕ vs. q curve in the ϕ vs. q plane. By
uncovering the physical operating mechanisms taking place
internal to the device, one could construct a model that not
only exhibits these two memristances, but also faithfully re-
produces one or more pinched hysteresis loops, measured
using different large-amplitude periodic signals [12]. The
resulting mathematical expressions may be extremely com-
plex, and may often be expressible only by implicit mathe-
matical equations. Nevertheless, they would define a mem-
ristor of the generic form given by (40a)–(40b), by virtue of
the characteristic property of the memristor.

The take-home lesson from this tutorial can be summa-
rized succinctly as follow:

Any 2-terminal electronic device devoid of internal
power source and which is capable of switching be-
tween two resistances upon application of an appro-
priate voltage or current signal, and whose resistance
state at any instant of time can be sensed by applying
a relatively much smaller sensing signal, is a memris-
tor, defined either by the ideal memristor equation, or
by one of its unfolded siblings via (40a)–(40b).

Our final remark is concerned with the significance of
the pinched hysteresis loop in the modeling of non-volatile
resistance switching memories. Let us recall that while the
memristance vs. state map tells us the complete set of small-
signal memristances endowed upon a memristive device, it
is rather difficult to measure them experimentally unless the
memristor can be modeled by the ideal memristor equation
v = R(q)i, where dq/dt = i. To extract such information
from the generic memristor (40a)–(40b), we have to identify
first the relevant state variable, or state variables in cases de-
manding a higher-order memristor state space. In contrast,
the chord memristances associated with a pinched hystere-
sis loop can be readily extracted since it is simply the set
of all slopes of a straight line anchored at the origin whose
tips traces along the loci of a measured pinched hysteresis
loop. Each such chord resistance is a true resistance indis-
tinguishable from a linear resistor having the same resis-
tance. The set of all such chord memristances associated
with a pinched hysteresis loop therefore provides a sub-
set of the memristor’s endowed small-signal memristances.
Since measuring pinched hysteresis loops associated with
different periodic input voltage, or current, waveforms ap-
plied across a memristive device is a relatively simple task
that could be automated,13 it is a useful tool for uncovering
a memristive device’s nonlinear physical operating mecha-
nisms, and for validating its memristive models. In the case

13Measurement instrument companies could exploit the high market
potentials of automated pinched-hysteresis-loop measuring instrumen-
tations, and their memristance extractions.

Fig. 11 An enlargement of the first 25 axiomatically defined circuit
elements from the periodic table of circuit elements (Fig. 31 of [3])
where the four basic circuit elements (resistor, capacitor, inductors
and memristor) are replaced by their symbols. The memcapacitor
is located at (a, b) = (−1,−2) and the meminductor is located at
(a, b) = (−2,−1). Observe that since these two elements require dou-
ble time integrals of voltage and current, their dynamics are of a higher
order than those of the four basic circuit elements enclosed inside the
dotted red box

of an ideal memristor, it is important to bear in mind that
the small-signal memristance, and its corresponding chord
memristance, represent exactly the same information. The
main difference is that while the chord memristance is a
long vector pinned at the origin of the v–i plane, its corre-
sponding small-signal memristance is an infinitesimal tan-
gent attached at each point on an ideal memristor’s constitu-
tive relation in the ϕ vs. q plane. It is also useful to note that
unlike classical electronic circuit analysis, the small-signal
memristor voltage associated with an applied small-signal
memristor current represents the actual total solution, and
is not superimposed upon some dc bias. We end this tutor-
ial with the following terse characterization of a resistance
switching memory device:14

If it’s pinched, it’s a memristor.
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14Exactly the same theory of the memristor can be used to identify
a memcapacitor (acronym for memory capacitor), and a meminduc-
tor (acronym for a memory inductor), from the table of axiomatically-
defined circuit elements [3] and [4], as depicted in Fig. 11, and pre-
sented at the 2008 Berkeley Symposium on Memristors and Mem-
ristive Systems (Part 1, towards the end of the opening lecture) on
Nov. 21, 2008 (proceedings of this symposium were videotaped and
available via YouTube), as well as further elucidated in [13] and [14].
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